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Abstract. This study presents a comparative analysis of ARIMA (Auto Regressive Integrated 
Moving Average) and Support Vector Regression (SVR) methodologies for demand forecasting 
and spare parts management in the context of cold fleet repair and maintenance operations. The 
efficacy of ARIMA modelling investigated through a comprehensive examination of spare parts 
demand at Hutama, a leading service provider in Indonesia, spanning from January 2019 to 
December 2023. Utilizing time series plotting, stationarity tests, and model selection criteria, 
ARIMA (0, 0, 1) is identified as the optimal forecasting model, providing valuable insights into 
projected spare parts usage. Concurrently, the study explores the effectiveness of SVR in 
accurately predicting spare part usage within the service and maintenance industry, focusing on 
coolers and freezers. Leveraging historical data from Hutama, the SVR model achieves 
remarkable precision through rigorous parameter tuning. Comparative analysis reveals 
differences in forecasting accuracy, with ARIMA demonstrating a MAPE (Mean Absolute 
Percentage Error) of 15.79% and RMSE (Root Mean Square Error) of 15.45, while SVR exhibits 
a MAPE of 10.10% and RMSE of 9.35. This comparative analysis contributes to enhancing spare 
parts management practices and operational efficiency in the service and maintenance industries. 
 
Keywords: ARIMA, SVW, Comparative Analysis, Demand Forecasting 

 

1.  INTRODUCTION 
Forecasting plays a pivotal role in decision-making processes for both individuals and 

organizations, enabling the prediction of future events by analysing historical data within 
a defined timeframe. Time series forecasting, in particular, serves as a crucial method 
for predicting future values, aiding in planning and resource allocation (Alqatawna et al., 
2023). 

Various techniques exist for time series forecasting, catering to linear and non-linear 
data patterns. Linear data often utilize methods like Autoregressive (AR), Moving 
Average (MA), Autoregressive Integrated Moving Average (ARIMA), and Seasonal 
Autoregressive Integrated Moving Average (SARIMA) models (Djoni, 2011; Ramos et 
al., 2014). In opposite side, non-linear data necessitates approaches such as Support 
Vector Machine (SVM), Backpropagation (BPG), K-Nearest Neighbours (KNN), and 
Fuzzy Time Series (FTS) (Kargul et al., 2017; Rais et al., 2022). 

Among these various techniques, Autoregressive Integrated Moving Average 
(ARIMA) stands out as a robust model for capturing temporal dependencies in data, 
making it suitable for both linear and non-linear patterns. Its versatility and effectiveness 
demonstrated across various forecasting applications (Ramos et al., 2015). Support 
Vector Regression (SVR), an extension of Support Vector Machine (SVM) designed for 
regression tasks, offers a powerful tool for forecasting tasks, particularly for addressing 
non-linear data challenges. SVR effectively fits data while minimizing errors, showcase 
remarkable adaptability and performance (Kargul et al., 2017; Rais et al., 2022). Spare 
parts management within the service and maintenance industry presents unique 
challenges, including the need for accurate forecasting to ensure timely availability of 
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parts for repairs and maintenance activities. In this study, we investigate the application 
of ARIMA and SVR methodologies for demand forecasting and spare parts 
management within the context of cold fleet repair and maintenance operations. 

The cooler and freezer market in Indonesia is experiencing significant growth, driven 
by the expansion of the frozen food and beverage industry. Breakdowns in these 
essential appliances are frequent, emphasizing the importance of effective spare parts 
management to uphold functionality. This research leverages historical data from 
Hutama, a prominent service provider in Indonesia, spanning from January 2019 to 
December 2023. Specifically, we focus on forecasting spare parts demand related to 
cold fleet breakdowns, a critical aspect of Hutama's operations.  

While ARIMA has been widely utilized in forecasting applications, its adaptation to 
spare parts demand forecasting in the service and maintenance industry remains 
underexplored. Similarly, the application of SVR for predicting spare parts usage 
dynamics in such contexts presents a notable gap in the existing literature. 

This research aims to fill this gap by conducting a comparative analysis of ARIMA 
and SVR methodologies for demand forecasting and spare parts management. By 
addressing the specific challenges faced by companies like Hutama, we seek to 
enhance spare parts management practices, ultimately contributing to improved 
operational efficiency and service quality within the cold fleet repair and maintenance 
industry. 

 
2.  LITERATURE REVIEW 

2.1 Forecasting Theory 
Forecasting theory revolves around the notion that present and past knowledge and 

experiences can harnessed to make predictions about the future (Petropoulos et al., 
2022; Syntetos et al., 2016). These predictions serve various purposes, from 
anticipating work requirements to predicting events like equipment failure, spare parts 
needs, or future weather conditions. As such, understanding the complexities of 
forecasting problems is crucial in developing effective theoretical frameworks. 
Theoretical insights gleaned from such analyses can then inform better practices, 
leading to more optimal outcomes (Armstrong & Green, 2018). 

 
2.2 Concept of Spare Parts Demand Forecasting 

Spare parts demand forecasting is a critical process that entails predicting the 
quantity and types of spare parts required within specific timeframes (İfraz et al., 2023; 
Pardede & Vanany, 2021; Van der Auweraer & Boute, 2019). Accurate forecasting in 
this domain is pivotal for successful spare parts inventory management, as it helps 
organizations avoid stock outs, downtime in repair work, and additional costs associated 
with emergency spare parts shipments. Effective spare parts demand forecasting relies 
on analyzing historical data, identifying demand trends, and considering external factors 
such as transportation and policy changes that can influence demand. 

 
2.3 ARIMA Forecasting Method 

ARIMA (Auto Regressive Integrated Moving Average) stands out as a robust method 
for demand forecasting, particularly in the context of time series and data analysis (İfraz 
et al., 2023). By modelling data as a combination of autoregressive, moving average, 
and differencing components, ARIMA effectively captures dependencies, patterns, and 
trends in historical data. While ARIMA has been widely utilized across various industries, 
its suitability for specific forecasting tasks requires careful consideration. Research 
suggests that incorporating demand indicators as exogenous variables into ARIMA 
models can enhance forecasting accuracy, particularly in supply chain contexts 
(Gonçalves et al., 2021).  
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ARIMA Model Equation: 
𝑌𝑡 = 𝜇 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 --------------------------------------- (1) 

 
Where: 
𝑀   = constant. 
𝜙1, … , 𝜙𝑝  = the coefficient of the autoregressive parameter of order p. 

𝑌𝑡=1, … , 𝑌𝑡−𝑝 = Independent variable. 

𝜀𝑡  = residual at time t. 
 
Differencing for stationarity: 

Φ𝑝(𝐵)∇𝑑𝑌𝑡 = 𝜉 + Φ𝑞(𝐵)𝜀𝑡  ------------------------------------------------------------- (2) 

 
Where: 
 𝑌𝑡   = Observation value at time t 

Φ𝑝   = Autoregressive parameter 

 𝐵   = Backshift operator 

 𝑑   = Differencing parameter 
 𝜉   = Constant parameter 

Φ𝑞   = Moving average parameter 

𝜀𝑡   = Residual value (error) 
 

2.4 SVR Forecasting Model 
Support Vector Regression (SVR) emerges as a powerful tool for solving regression 

problems, including demand forecasting (Amanda et al., 2012; Yasin et al., 2014). SVR, 
a supervised learning algorithm, seeks to find a hyperplane that minimizes error while 
maximizing margin, effectively predicting continuous variable values. The method's 
adaptability to both linear and nonlinear data, coupled with its ability to address 
overfitting issues, makes it a valuable asset in forecasting spare parts demand. The 
selection of appropriate parameters, often optimized through methods like Grid Search, 
is crucial for maximizing SVR's predictive performance (Balasundaram & Prasad, 2020).  

SVR Function Equation:  

𝑓(𝑥) = 〈𝑤. 𝑥〉 + 𝑏 ------------------------------------------------------------------------- (3) 
 
Where: 

𝑓(𝑥) = SVR Function 
x = Input vector 
w = Weight vector of dimension l  
b = Bias 
 
Optimization Problem: 
Equation (3) is a general linear function, where 〈.〉 represents the dot product or scalar 

multiplication on x. To achieve good generalization of the function f(x), it done by 
minimizing w by solving the optimization problem as follows:  

 

𝑚𝑖𝑛
1

2
‖𝑤‖2 ----------------------------------------------------------------------------------- (4) 

 
With the provision of: 
𝑦𝑖 − 〈𝑤. 𝑥𝑖〉 − 𝑏 ≤ 𝜀 
〈𝑤. 𝑥𝑖〉 − 𝑦𝑖 + 𝑏 ≤ 𝜀 
𝜀 = Margin 
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2.5 Model Evaluation 
Evaluating forecasting models is essential for assessing their accuracy and reliability, 

guiding decision-making processes, and ensuring optimal model selection (Purwoko et 
al., 2023). Common evaluation metrics such as Root Mean Square Error (RMSE) and 
Mean Absolute Percentage Error (MAPE) provide insights into the predictive 
performance of models. Lower RMSE and MAPE values indicate better accuracy, 
signaling the effectiveness of the forecasting model in spare parts inventory 
management. By selecting the most suitable forecasting model based on evaluation 
results, organizations can optimize spare parts stocking, reduce downtime, enhance 
efficiency, and mitigate additional costs associated with suboptimal forecasts. 

The formula for RMSE is as follows: 

𝑅𝑀𝑆𝐸 = √∑
(𝑍𝑡−�̂�𝑡)2

𝑛
𝑛
𝑡=1  ------------------------------------------------------------------- (5) 

Where: 
𝑍𝑡 = actual data at time t 

�̂�𝑡 = predicted data at time t 
n = number of predicted data 
 
The formula for MAPE is as follows: 

𝑀𝐴𝑃𝐸 =
∑ |

𝑍𝑡−�̂�𝑡
𝑍𝑡

|𝑛
𝑖=1

𝑛
 × 100% ------------------------------------------------------------ (6) 

Where: 
𝑍𝑡 = actual data at time t 

�̂�𝑡 = predicted data at time t 
n = number of predicted data 
 

3.  RESEARCH METHODS 

3.1 Data Source 
This research utilizes secondary data from Hutama, encompassing actual spare parts 

usage spanning from 2019 to the end of 2023. This dataset includes both hard copy and 
soft copy sources accessible to the company's top management. 
 
3.2 Methodology for Comparison Analysis between ARIMA Model and SVR Model 

To compare ARIMA and SVR models for demand forecasting and spare parts 
management, the data pre-processing ensures consistency across models by using the 
same dataset split into training and testing subsets. ARIMA undergoes differentiation to 
stabilize data variance, while SVR normalizes data for standardized scaling. Both 
models trained on the training dataset, with ARIMA parameters selected through 
analytical procedures and SVR parameters optimized via Grid Search Optimization. 

Model Evaluation criteria include parameter significance, AIC minimization, residual 
characteristics using Ljung-Box test and normality assessment suing Saphiro-Wilk test. 
Metrics such as MAPE and RMSE quantify forecast accuracy, guiding the comparison 
between models. Statistical analysis, including confidence intervals, further validates 
model performance. 

 
3.3 Comparison Analysis 

Comparative analysis between ARIMA and SVR, using metrics MAPE and RMSE, 
highlights ability to predict spare parts demand. Integrating both models offers a 
comprehensive approach to demand forecasting and spare parts management, 
providing valuable insights for decision-making processes. 

 
 
 
 



The 4th International Conference on Innovations in Social Sciences Education and Engineering 
(ICoISSEE-4) 

Bandung, Indonesia, July, 20th, 2024 

 

5 

 

3.4 Forecasting 
Following model selection, forecasting conducted using the chosen ARIMA model to 

estimate spare parts demand for six months beyond the available data. The research 
process follows a systematic approach, involving data collection, normalization, and 
analysis of spare parts usage trends. Parameters such as C and ε optimized, and model 
validation performed using testing data to project future trends and assess prediction 
accuracy through RMSE and MAPE calculations. 

 
4.  RESULT AND DISCUSSION 

4.1 Results of ARIMA Model Testing 
The following we present result and perform discussion for the Comparative Analysis 

of ARIMA and Support Vector Regression (SVR) for Demand Forecasting and Spare 
Parts Management in Cold Fleet Repair and Maintenance. 

 
4.1.2 Data Stationarity and Model Identification 

The analysis of spare parts usage data from January 2019 to December 2023 
revealed significant fluctuations over the 60-month period, with an average utilization of 
103 units spare parts. The stationary graph shown as follow: 

 
 
 
 
 

 

 

 

 

Figure 1. Stationarity Test Result 

The results indicate that the data is stationary, so no additional differencing is 
necessary. Time series plotting and Augmented Dickey-Fuller Test confirmed the 
stationarity of the data, essential for ARIMA modelling, with a p-value of 0.01569.  

The next step involves analyzing ACF and PACF plots to explore autocorrelation and 
partial autocorrelation. 

 
 

 

 

 

Figure 2. ACF and PACF Result 

The ACF and PACF analysis indicates stationarity in the time series data at lag 1. 
Based on these findings, potential ARIMA models include ARIMA(1,0,1), ARIMA(1,0,0), 
and ARIMA(0,0,1). The parameter estimation results obtained using R software are as 
follows: 
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Table 1. Parameter Estimation Test Result 

Model Significance AIC Ljung-Box test 
(White-Noise) 

Saphiro-Wilk 
(normality test)  

ARIMA(1,0,1) AR1=0,546 
MA1=0,016 
Int=0,000 

485,81 0,983 (white) 0,755 (normal) 

ARIMA(1,0,0) AR1=0,000 
Int=0,000 

486,77 0,5339 (white) 0,4127 (normal) 

ARIMA(0,0,1) MA1=0,000 
Int=0,000 

484,18 0,7078 (white) 0,8096 (normal) 

 
Based on the results shown in Table 1, the best model, ARIMA(0,0,1), is selected 

due to its smallest AIC value of 484.18. The forecast for spare parts usage over the next 
six months using this model is as follows: 

 
Table 2. Forecasting Result Based on ARIMA Model 

Month Spare part actual 
used 

Forecasting result 

Jul 2023 109 97.07572 

Aug 2023 92 104.6146 

Sep 2023 80 104.6146 

Oct 2023 109 104.6146 

Nov 2023 92 104.6146 

Dec 2023 86 104.6146 

 

The forecasting results visualized in the following graph: 

 

Figure 3. Forecasting Result Visualisation 

Then the interpretation of the MAPE values based on the following table: 
 

Table 3. MAPE interpretation 

MAPE Interpretation 

<10 Highly accurate 

10-20 Accurate 

20-50 Reasonable 

>50 Inaccurate 

Source:  (Fibriyani & Chamidah, 2020) 
 

The model evaluation using MAPE and RMSE for the spare parts yielded a MAPE 
value of 15.79% and an RMSE value of 15.45. These evaluation results indicate that 
the ARIMA(0,0,1) model has an acceptable and accurate level of accuracy for 
forecasting spare part usage over the specified period. 
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4.2 Results of SVR Model Testing 
The training data consists of 90% and the testing data 10%. The training data period 

is from January 2019 to December 2023. In SVR modelling, the response variable (Y) 
is spare parts, and the predictor variable (X) is the monthly period. 

 
4.2.1 Results of SVR Model Testing 

The first step before building an SVR model is to determine the data pattern to select 
the appropriate Kernel function. The data pattern can be linear or nonlinear, which is 
determined through the Terasvirta test. The Terasvirta test using R software for spare 
parts data yielded a p-value of 0.05353. This result indicates that the F-value of the 
Terasvirta test (df1 = 2, df2 = 57) is 3.0832. Since the p-value is greater than the 
significance level, we fail to reject H0, thus concluding that the spare parts data has a 
linear pattern. Therefore, the kernel function used in the SVR model is a linear kernel 
function. 

 
4.2.2 Results of SVR Model Testing 

After testing the data pattern with the Terasvirta test, the next step is to determine 
the lag that affects time t as a data variable. The determination of input lag based on the 
Partial Autocorrelation Function (PACF) plot. The PACF plot used to determine the 
partial correlation between variables in a time series considering a specific time lag. The 
PACF plot for SVR conducted to observe the dependency pattern between input and 
output variables in the time series. The determination of the influential lag based on the 
PACF plot presented in Figure 4. 

 
Figure 4. Determination of Influential Lag with PACF Plot 

 
Based on the visualization in Figure 4, only the first lag is significantly influential, so 

the observations in the first time period not use. Therefore, in the SVR modelling, the 
training data starts from period t=2 to t=42, while the testing data starts from t=43 to 
t=60. This data use for SVR modelling. 

 
4.2.3 Tuning SVR Parameters Using Grid Search Optimization 

Based on the nonlinearity testing results, the SVR model used has a linear kernel 
with initial parameters Cost (C) and Epsilon (ε). To obtain the optimal parameters, the 
grid search optimization method is applied, which consists of two stages: the loose grid 
stage and the finer grid stage. The parameter value ranges for the loose grid stage 
presented in Table 4. 

 
Table 4 Parameter Value Range for the Loose Grid 

Parameter Value range 

Cost (C) 21;  22; 23; … ; 25;  26;  27 

Epsilon (𝜀) 0;  0,01; . . . ;  0,99;  1 
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Table 4 shows the range of parameter values for the loose grid stage. The optimal 
results from the grid search method at this stage using R Software are Cost (C) = 2 and 
Epsilon (ε) = 0.7. Visualization of these results shown in the heat map in Figure 5.  

 

 
Figure 5. Heatmap Visualization Using Loose Grid Method 

 
After obtaining the optimal parameters in the loose grid stage, the next step is 

parameter tuning with a finer grid. The finer grid stage aims to find the optimal values 
of Cost (C) and epsilon (ε) around the parameter values identified in the loose grid 
stage. The range of parameter values for the finer grid presented in Table 5. 

 
Table 5. Parameter Value Range for the Finer Grid 

Parameter Value range 

Cost (C) 21; 21,25; … ; 21,75; 22 

Epsilon (𝜀) 0;  0,01; . . . ;  0,99;  1 

 
Based on Table 5, it shows the range of parameter values around the optimal 

parameter values obtained in the loose grid stage. These values then use to determine 
the optimal values for the finer grid stage. 

In the finer grid stage, the selection of parameters C and epsilon is based on the 
results from the loose grid stage. The optimal range of parameter values for C and 
epsilon is around the values identified in the previous stage, selected based on the 
lowest error value. The optimal results from the finer grid are Cost (C) = 2 and Epsilon 
(ε) = 0.7. These parameters are used to determine the prediction accuracy of SVR. After 
tuning, the SVR model with the training data produces RMSE = 21.06 and MAPE = 
17.02%, indicating good accuracy. Figure 6 shows that the SVR model with a linear 
kernel is effective for modelling spare parts usage trend. 

 

  
Figure 6. Prediction Plot of the SVR model after Tuning 

 
4.2.4 Tuning SVR Parameters Using Grid Search Optimization 

The SVR model with a linear kernel use to accurately predict spare parts demand. 
Predictions are made on testing data from 𝑡 = 43 to 𝑡 = 60, totalling 18 data points. The 
prediction results show an RMSE of 9.35 and MAPE of 10.10%, categorized as accurate. 
Visualization of the prediction results presented in Figure 25. 
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Figure 7. Prediction plot of the SVR model based on testing data 

 
Based on Figure 7 and the values of RMSE and MAPE, the prediction results on the 

testing data indicate an accurate model for spare parts data. 
 

4.2.5 Forecasting Results 
The SVR model with a linear kernel use to accurately predict spare parts demand. 

Predictions are made on testing data from 𝑡 = 43 to 𝑡 = 60, totalling 18 data points. The 
prediction results show an RMSE of 9.35 and MAPE of 10.10%, categorized as accurate. 
Visualization of the prediction results presented in Figure 25. 

  
Figure 8. Forecasting Visualization Based on SVR Model 

 
4.3 Comparison of ARIMA and SVR Model Results 

Below is a summary of RMSE and MAPE results along with their interpretations for 
the forecasting models of ARIMA and SVR. 

 
Table 6. RMSE and MAPE Comparison Result 

Description ARIMA SVR 

RMSE MAPE Interpretation RMSE MAPE Interpretation 

Spare part 15,45 15,79% accurate 9,35 10,10% accurate 

 
4.4 Analysis and Comparison of Models  

Based on the comparison between ARIMA and SVR models for demand forecasting 
and spare parts management in cold fleet repair and maintenance, several conclusions 
can be drawn. The SVR model exhibits lower RMSE and MAPE values compared to 
ARIMA, with RMSE of 9.35 versus 15.45 and MAPE of 10.10% versus 15.79%, indicating 
higher accuracy in predicting spare parts demand.  

In terms of model training and tuning, ARIMA(0,0,1) was trained on historical data 
spanning from January 2019 to December 2023. It selected based on significance and 
diagnostic criteria, providing accurate forecasts for spare parts demand. On the other 
hand, SVR utilized the Terasvirta linearity test and grid search optimization (C=2, ε=0.4), 
demonstrating robust predictive capabilities for both linear and nonlinear data patterns. 
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In forecasting performance, ARIMA(0,0,1) provided accurate forecasts six months 
ahead, with MAPE and RMSE within the acceptable range of 10-20%, highlighting its 
precision in demand forecasting. Similarly, SVR achieved high accuracy in predicting 
spare parts, with minimal RMSE and MAPE values during testing, showcasing its robust 
forecasting capability. 

Comparatively, ARIMA very good in capturing time series patterns and providing 
accurate forecasts for stable demand scenarios. Meanwhile, SVR's adaptability to 
nonlinear patterns enhances its forecasting effectiveness in dynamic environments. 
Integrating both models offers a comprehensive approach to demand forecasting and 
spare parts management, providing valuable insights for decision-making processes. 

The study emphasize the importance of selecting the appropriate modeling approach 
based on data characteristics and forecasting requirements. It emphasizes the benefits 
of integrating ARIMA and SVR models to enhance forecasting accuracy and support 
effective spare parts management in cold fleet repair and maintenance operations. 

 
CONCLUSIONS 

This study conducted a comprehensive comparative analysis of ARIMA and Support 
Vector Regression (SVR) models for demand forecasting and spare parts management 
in cold fleet repair and maintenance. The research delved into the intricacies of each 
methodology, starting with data stationarity assessment and proceeding to model 
identification, parameter tuning, and forecasting.  

The ARIMA model demonstrated its efficacy in capturing the dynamic nature of spare 
parts demand, leveraging time series analysis techniques to provide accurate forecasts. 
By identifying the optimal ARIMA model (0, 0, 1) through rigorous significance and 
diagnostic criteria evaluation, the study illustrated the model's ability to predict spare 
parts usage at Hutama. The ARIMA model's performance urther validated through 
metrics MAPE and RMSE, affirming its suitability for practical forecasting applications. 

The SVR model shown its effectiveness in handling nonlinear relationships, 
particularly evident in spare parts exhibiting nonlinear patterns. Through Terasvirta 
testing and parameter tuning using grid search optimization, the SVR model accurately 
captured the complexities of spare parts data, yielding high accuracy in both training and 
testing phases. The SVR model's ability to adapt to varying data patterns highlights its 
versatility and potential for handling diverse forecasting challenges. 

By comparing the strengths and limitations of ARIMA and SVR models, this study 
provides valuable insights into comparative performance in demand forecasting and 
spare parts management. While ARIMA very good in capturing linear relationships and 
stationary data, SVR offers robustness against nonlinearities and adapts well to diverse 
data patterns.  

The implications of this comparative analysis extend beyond the field of cold fleet 
repair and maintenance, offering valuable guidance for decision-makers in various 
industries reliant on demand forecasting. By understanding the strengths and limitations 
of each methodology, organizations can make informed decisions regarding the 
selection and implementation of forecasting models, thereby optimizing spare parts 
management and enhancing operational efficiency. 
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